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Abstract 
This project explores the predictive power of machine learning models in forecasting the outcomes of 

missile and drone interceptions using a comprehensive dataset detailing missile attacks in Ukraine, 

combined with meteorological data. The study utilizes various machine learning techniques, including 

Elastic Net, Random Forest, Gradient Boosting, with a particular focus on ensemble methods to 

enhance predictive accuracy and robustness. Key findings indicate that while weather conditions have 

a minimal impact on interception success, the volume of missiles launched is a significant predictor, 

suggesting that higher launch numbers increase interception probabilities. The research underscores 

the effectiveness of ensemble models, which outperform individual predictive models in accuracy and 

stability. This project not only contributes to the theoretical advancements in applying machine 

learning to military strategy but also provides practical insights that can aid defence planners and 

strategists in understanding and predicting missile defence outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 
This project aims to develop a predictive model that estimates how many missiles and drones will be 

destroyed based on historical attack patterns, weapon characteristics, and weather conditions. By 

leveraging machine learning algorithms and time-series analysis, we seek to provide insights into the 

key drivers of successful destructions. 

Recent research highlights the growing role of machine learning and environmental factors in missile 

and drone interception. Studies on reinforcement learning for UAV interception demonstrate how AI-

driven algorithms can optimize response times and improve interception accuracy in dynamic aerial 

environments (Cai et al., 2024). Similarly, deep reinforcement learning has been applied to missile 

guidance systems, allowing for improved trajectory optimization against manoeuvring targets (He et 

al., 2023). Moreover, the effect of weather conditions, with factors like rain, fog, and strong winds, 

which might in theory significantly affect the probability of destruction remains rather unexplored in 

academic literature. 

To develop the predictive model, "Massive Missile Attacks on Ukraine" dataset, available on Kaggle, 

was utilized. This dataset provides a detailed historical record of missile and drone attacks during the 

ongoing conflict in Ukraine, covering key variables such as the number of missiles and drones launched, 

interception success rates, weapon types, and launch locations. In addition, it includes information  

allowing for the analysis of temporal trends, attack intensities, and defence effectiveness over time. 

To enhance predictive accuracy, this dataset is supplemented with weather data, capturing key 

meteorological factors (e.g., temperature, wind speed, precipitation) that may influence missile 

interception rates. By integrating these datasets, the project aims to quantify the impact of different 

attack patterns, weapon systems, and environmental conditions on the probability of successful 

missile and drone destruction. 

The dataset is first cleaned and pre-processed, addressing missing values, one-hot encoding categorical 

variables (e.g., missile types and launch locations), and creating temporal features such as seasonal 

trends or moving averages. Weather data is merged with the attack dataset to assess the potential 

influence of meteorological conditions on interception success. 

Following preprocessing, exploratory data analysis is conducted to identify patterns, correlations, and 

potential biases in the data. The modelling phase begins with a baseline prediction using the average 

historical destruction rate. First Ordinary Least Squares regression is implemented for interpretability. 

Then a more advanced models, like Elastic Net and Random Forest, is utilized to capture non-linear 

relationships. Next XGBoost – a gradient boosting algorithm – is used to optimize and improve  

predictive accuracy. Finally, Multilayer Perceptron, kNN and SVM Regression are trained to compare 

with previous models. 

The project is structured as follows. The first chapter discusses the two datasets used and the major 

transformation implemented. The second chapter provides an overview of the methodological 

approaches that were employed. The third chapter discusses and evaluates the models´ performance. 

Finally, the last chapter provides a general overview of the work. 

 

 



Data Description 
The primary dataset, "Massive Missile Attacks on Ukraine", publicly available on Kaggle, contains 

records of missile and drone attacks from 2022 to 2023, capturing key characteristics such as weapon 

type, launch and target locations, and interception success. To enhance predictive accuracy, this 

dataset is merged with meteorological data from Meteostat website, enabling an assessment of how 

weather conditions—such as temperature, wind speed, and precipitation—may influence interception 

success. Given the potential impact of adverse weather on missile trajectory, drone stability, and 

detection efficiency, weather variables are expected to contribute to the explanatory power of the 

model. This data is taken as daily weather in Kyiv, which is assumed to be an approximation of the 

weather in the locations the targets were flying through. We acknowledge, that this may give too little 

information for our task since the weather can be significantly different in different locations of 

Ukraine and change throughout the day. 

Before modelling, extensive data cleaning and preprocessing steps were undertaken. Missing values 

were converted to NA to ensure consistency, and redundant or irrelevant variables such as 

destroyed_details, launched_details, or launch_place_details were removed to reduce dimensionality. 

Categorical variables, including carrier, model, and launch_place, were transformed using one-hot 

encoding to enable processing by machine learning algorithms. 

Temporal features were extracted from time_start, classifying each observation by weekday and 

season to account for potential seasonal effects on missile performance and air defence. Additionally, 

moving averages of destruction rates were computed over seven-day, thirty-day, and one-hundred-

day windows to smooth fluctuations and highlight broader trends in interception effectiveness. 

A correlation analysis revealed a strong positive correlation (0.992) between launched (number of 

launched rockets) and destroyed_not_reached (number of destroyed targets and those that did not 

reach its goal), indicating that the number of missiles launched is a primary determinant of interception 

outcomes. However, weather variables exhibited weak correlations with both launched and 

destroyed_not_reached, with wind speed (wspd) showing only 0.026 correlation with launched and 

0.019 with destroyed_not_reached, while precipitation (prcp) had negligible correlations of -0.005 and 

-0.007, respectively. This suggests that weather conditions may have a limited direct effect on missile 

interception success within the dataset. 

The final dataset, structured with key temporal, geographical, and weather-related predictors, ensures 

that the model captures both attack patterns and environmental influences while minimizing 

redundancy. This structured approach enhances the dataset’s suitability for predictive modelling and 

statistical analysis. 

 

 

 

 

 

 

 

https://www.kaggle.com/datasets/piterfm/massive-missile-attacks-on-ukraine
https://meteostat.net/ru/place/ua/kyiv?s=33345&t=2022-02-24/2025-01-25


Figure 1: Correlation between the main variables: 

 

 

 

 

 

 

 

 

 

Methodology 
We employed a variety of machine learning and econometric techniques to develop and assess the 

best-performing predictive models. Key methodologies include Ordinary Least Squares (OLS) 

Regression, Elastic Net Regression, Random Forest, Gradient Boosting, Multilayer Perceptron (MLP), 

kNN, and SVM Regression. The models were tuned and evaluated using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and R-squared (R^2) as benchmarks to identify the most effective 

approach. The following sections provide a brief introduction to each methodology, grounded in 

relevant literature 

For the OLS regression model, we utilized all available predictors to establish relationships with the 

target variable. OLS provides a useful baseline for performance comparison against more complex 

models, thanks to its simplicity and interpretability.  

Elastic Net effectively addresses multicollinearity by combining the L1 and L2 regularization of Lasso 

and Ridge regression techniques by shrinking some coefficients toward zero (like Lasso) and others 

toward each other (like Ridge). The tuning of hyperparameters such as the mix ratio (alpha), lambda, 

and polynomial transformations of features was guided by cross-validation using RMSE. Zou and Hastie 

(2005) in their seminal paper provide comprehensive insights into the advantages of Elastic Net in 

handling various data anomalies. 

The Random Forest, introduced in a seminal paper by Breiman (2001), is a technique that employs 

multiple decision trees to mitigate the overfitting risk associated with single decision trees and 

enhances generalization across diverse datasets. Parameters such as the number of trees, the number 

of features per split, and the minimum size of leaf nodes are crucial for optimizing performance.  

Gradient Boosting constructs an ensemble of models sequentially, with each new model correcting 

errors from the previous ones. We specifically employed XGBoost, renowned for its execution speed 

and model performance, and adjusted parameters like the number of trees, maximum depth, 

regularization, number of features per split, share of data subsampling, weighting of child trees and 

learning rate. The improvements in prediction accuracy are supported by the detailed examination in 

Chen and Guestrin's (2016) paper on XGBoost. 

The MLP is a simple neural network with one hidden layer. The tuning of parameters, including the 

number of neurons in the hidden layer and learning rate decay, was aimed at capturing the non-linear 



relationships in the data. Goodfellow, Bengio, and Courville (2016) provide an extensive discussion on 

the capabilities and applications of MLPs in their book on deep learning. In addition, we tested kNN 

and SVM Regression algorithms also tuning their hyperparameters. 

The data was randomly split into training set (80% of the data, 1552 observations) and the test set 

(20% of the data, 388 observations). The models' performance was rigorously tested on the 

independent test set, focusing on minimizing RMSE and MAE while maximizing R^2. The final 

evaluation involved an ensemble technique using weighted average by RMSE of predictive outputs of 

the individual models to leverage their collective strength and reduce prediction variance. It is based 

on the idea that models with independent errors will cancel those error with each other as more 

models are used. 

Finally, we perform permutation tests to check if some models statistically outperform others. This 

test is based on the idea that under the null hypothesis, both models have equal performance, which 

means that it is not important from which model prediction outcome is taken. Using this idea we 

sample observations with equal probability from both models and subsequently calculate the 

evaluation metric (RMSE). This procedure is repeated many times to obtain a distribution of 

evaluation metrics under the null. The approximate p-value that the better model is significantly 

better is calculated as a percentage of distribution’s RMSEs which are higher than the model’s RMSE. 

Results 
The goal of this project was to investigate the impact of attack patterns, weather conditions, and 

temporal factors on the probability of missile and drone destruction. The chapter highlights the 

procedure and results from the models implemented. 

Model Performance 

First, the performance of the models was tested using Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and R-squared (R²). The baseline models, which used the average destruction 

rate from the training data, had RMSE of 4.93, and MAE of 2.27, and the Ordinary Least Squares 

(OLS) regression with only launched variable provided an improvement with RMSE of 2.37, and MAE 

of 1.51. 

OLS which included all variables performed slightly better than the baseline OLS with RMSE of 2.1, 

and MAE of 1.22. Elastic Net Regression outperformed other models with RMSE of 1.967 and MAE of 

1.15, demonstrating a significant improved in predictive accuracy. Random Forest did slightly worse 

in terms of RMSEs of 2.07 but much better in terms of MAE of 0.989. Boosted tree performed the 

best among individual models in terms of RMSE of 1.914 and decent MAE of 1.06. The Multilayer 

Perceptron (MLP) model underperformed slightly, with an RMSE of 2.18, and MAE 1.22.  SVM 

Regression performed comparably with RMSE of 2.08, and MAE of 1.25. It is likely that either tuning 

of parameters was not very successful for MLP and SVM or their package functions were not the 

most effective. The K-Nearest Neighbors (KNN) model had the weakest performance, with an RMSE 

of 5.15 and an R² of only 0.93, indicating that it struggled to generalize patterns from training data 

compared to other models.  

The most effective models were ensemble models that combined predictions from several different 

methods; a weighted ensemble of all non-baseline models except kNN had the lowest RMSE of 1.85 

and very decent MAE of 1.01. Unweighted ensemble performed comparably. From the table, it is 

evident that ensemble models provided the best predictive performance, reducing RMSE and 

improving R² compared to individual models. 



 

 

 

 

 

Table 1: Model Performance 

Model RMSE MAE R² 

Baseline: Avg. Dest. Rate 4.93 2.3 0.938 

Baseline: OLS (launched) 2.3 1.5 0.985 

OLS (all variables) 2.1 1.22 0.989 

Elastic Net Regression 1.97 1.15 0.989 

Random Forest 2.07 0.989 0.990 

XGBoost 1.914 1.06 0.990 

Multilayer Perceptron 2.18 1.22 0.987 

k-Nearest Neighbors 5.15 3.02 0.93 

Unweighted Ensemble 1.847 1.02 0.991 

Weighted Ensemble 1.846 1.01 0.991 

Ensemble (Elastic net, Forest and XGBoost) 1.856 1.008 0.991 

 

Table 1 presents the overall RMSE, MAE and R² values for each model, highlighting that ensemble 

models outperformed individual models with lower RMSE, MAE and higher R². 

The results of permutation test are in Table 2 (only models with higher RMSE than OLS with all variables 

are tested). We see that most tested models are significantly outperforming OLS with all variables 

except Random Forest and SVM Regression. Moreover, if we compare best models with each other, 

we see that we cannot claim that XGBoost is actually better than Elastic Net. If we compare those 2 

models with Unweighted Ensemble we see that it is only significantly better than Elastic Net, while not 

significantly better than XGBoost. 

Table 2: Permutation Tests 

Model comparison p-value 
Elastic net vs. OLS with all variables 0.001 
Random Forest vs. OLS with all variables 0.441 
XGBoost vs. OLS with all variables 0.015 
SVM vs. OLS with all variables 0.480 
Unweighted Ensemble vs. OLS with all variables 0 
XGBoost vs. Elastic net 0.245 
Unweighted Ensemble vs. Elastic net 0.002 
Unweighted Ensemble vs. XGBoost 0.141 

 

Interpretation of Key Predictors 

The most significant predictor turned out to be the number of missiles launched, which showed a 

strong correlation of 0.992 with the number of missiles destroyed or failing to reach their target. This 

suggests that the higher the volume of launches, the greater the number of interceptions. Missile type 



also played a significant role. Ballistic missiles showed a lower destruction rate compared to cruise 

missiles and drones, likely due to their speed and evasion techniques. The missiles from anti-aircraft 

missile systems (e.g., C-300, C-400) also had a notable effect on destruction probabilities. 

Moreover, the method of missile deployment, especially the launch carrier type also significantly 

impacts interception success. Missiles launched from jet-based and missile-system-based platforms 

are associated with higher destruction rates, while naval-launched missiles have lower interception 

probabilities.  

Geographical factors further influence missile interception. Intuitively, the missiles launched from the 

East and South have slightly higher destruction rates than those from the North. The variable indicating 

launches deep inside Russia negatively impacted destruction rates, suggesting that missiles from long-

range launch points may be harder to intercept. However, weather conditions, including wind speed, 

precipitation, and air pressure, showed weak correlations with interception success. This suggests that 

it is likely that modern missile guidance systems and technologies are relatively not affected by 

moderate weather conditions. 

Finally, temporal trends, particularly the 30-day moving average of destruction rates, demonstrated 

the highest predictive power. This indicates that medium-term trends offer valuable insights for 

forecasting missile interception effectiveness. 

Validation and Robustness 

To ensure robustness, models were validated using an independent test set. By using an ensemble 

approach, which combined the predictions from the best-performing models and excluded those that 

underperformed, we were able to reduce variance and enhance overall accuracy. The feature 

importance analysis showed consistent results across different models, further supporting the 

robustness of our findings.  

Conclusion 
This study aimed to evaluate the capability of machine learning models to predict missile and drone 

interception outcomes based on extensive historical data and variable weather conditions. Through a 

rigorous comparison of different modelling techniques, our findings reveal that ensemble models, 

which combine multiple predictive approaches, provide the highest accuracy and robustness, aligning 

with current advances in machine learning research that advocate for the power of collective 

prediction methodologies. 

Contrary to our initial hypothesis, weather conditions played a minimal role in influencing interception 

success rates. This outcome indicates that contemporary missile and drone technologies are likely to 

withstand varied environmental factors. Importantly, the quantity of missiles launched proved to be 

the most impactful predictor, underscoring the principle that a higher number of launches increases 

the probability of interception successes, which could be due to the saturation of defensive systems. 

Despite achieving high model accuracy, this study acknowledges limitations such as the exclusion of 

potential influential factors like evolving defence technologies and strategic modifications which may 

affect interception dynamics. These limitations suggest space for further research, possibly 

incorporating data on specific missile defence systems and their technological advancements to refine 

predictive accuracy. 



The practical implications of our research extend to military strategy and defence planning, offering a 

data-driven basis for anticipating outcomes of missile defence engagements, which can support more 

strategic allocation of defence resources in real-world conflict scenarios. 

Ultimately, this project not only advances our understanding of key determinants in missile and drone 

defence efficacy but also exemplifies the application of advanced machine learning techniques in 

strategic military contexts, thereby contributing valuable insights to the field of defence analytics. 
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